Magnet Filament Monitor V4 - Calibration Issue
-
@Diamondback ahh yes I see I have not tested the monitors as much with 3.5b1 as I have with 3.4.x are you seeing the same behaviour with both firmwares?
-
@Diamondback use the default 3mm unless you get a very large measured sensitivity range, in which case you could use 6mm. As you have the filament monitor a long way from the extruder drive, you are likely to need an even larger range than that.
When running a print, the measured sensitivity should be displayed after about 10mm of filament should be extruded. The length over which calibration has been done should gradually increase and the measured sensitivity range will widen at first and then settle down.
If you pause the print, calibration will restart from the beginning when you resume.
-
-
@dc42 Ok, that's the behavior I expected from the documentation, but unfortunately it's not what I see.
After it first displays some form of calibration data, it just stops there and won't calibrate any further. The reported values then stay constant for the entire duration of the print.If I use the reported values in my M591 call, the sensor appears to "work", as in, it does spawn filament error events when the runout switch triggers etc. However, the calibration distance of just a few mm of course leads to incredibly inaccurate results...
-
@Diamondback thanks. It may be that there is a bug in the support for filament monitors on main boards used as expansion boards. I will add this to my investigations list.
-
@dc42 Thank you
-
@dc42 Some further info, yesterday my filament didn't detach from the empty spool correctly and got caught during a testprint. The active filament monitor did not catch this, it did not generate any filament error at all even after a few minutes of continuing to print.
Its config:
M591 D2 P4 C"100.io2.in" S1 L23.2 R70:150 E5
I guess something is indeed not working?
(The switch part of the monitor works fine btw) -
Did you send M591 to see what it reported after the fail?
-
@Phaedrux Nope, unfortunately not, but I guess I can easily replicate this. I'll do that when I find some free time
-
@dc42 said in Magnet Filament Monitor V3 - Calibration Issue:
@Diamondback thanks. It may be that there is a bug in the support for filament monitors on main boards used as expansion boards. I will add this to my investigations list.
Any news on this?
-
@Diamondback said in Magnet Filament Monitor V3 - Calibration Issue:
@dc42 said in Magnet Filament Monitor V3 - Calibration Issue:
@Diamondback thanks. It may be that there is a bug in the support for filament monitors on main boards used as expansion boards. I will add this to my investigations list.
Any news on this?
@dc42 ?
-
@Diamondback please can you update your firmware to 3.5beta4 on both boards and check whether the issue still occurs. There have been some fixes in this area.
-
@dc42 Updated everything to 3.5b4 and it seems like I can still not get anything out of my sensors other than the presence switch signal.
Configuration:
;Filament sensors M591 D0 P4 C"100.io0.in" S1 M591 D1 P4 C"100.io1.in" S1 M591 D2 P4 C"100.io2.in" S1 M591 D3 P4 C"100.io3.in" S1
M591 D3 after a print using that extruder:
Duet3D rotating magnet filament monitor v4 with switch on pin 100.io3.in, enabled, sensitivity 28.80mm/rev, allow 60% to 160%, check every 3.0mm, version 4, filament present, mag 132 agc 34, no calibration data
(the other 3 also don't show any calibration data, but I guess that's expected since they weren't actually used during the print)
Previously it was sometimes showing some data, but now it's just constantly "no calibration data".
-
@dc42 anything more I can test or help you with to debug this? I'd really like to get my 4 sensors working beyond the switch signal
-
@Diamondback thanks for the reminder. I'll try to reproduce this next week before we freeze 3.5.0 rc1.
-
@Diamondback When you say V4 are you referring about the v3 product on the website that's revision 3.0? The software calls v4 in gcode which is really v3.0 but the fourth revision because of 1.7, 1.7a, 1.7b, then 3.0?
Or is a new filament monitor v4 on the way?
-
This post is deleted! -
@patterson6 It's the newest rev of the monitor with the new rod magnets. So based on this link here, it would be 3.0. The V4 is just what the status report returns
https://docs.duet3d.com/en/Duet3D_hardware/Accessories/Rotating_Magnet_Filament_Monitor -
@Diamondback please provide your complete config.g file.
-
;M929 S3 ;enable debug logging ;M575 P1 S1 B57600 ;Enable PanelDue Port G90 ; send absolute coordinates... M83 ; ...but relative extruder moves M550 P"V-Core Toolchanger" ; set printer name ; Enable network M552 P0.0.0.0 S1 M669 K1 ; select CoreXY mode G4 S2 ; wait for expansion boards to start ; Drives ;XY1: back left ;XY2: back right M569 P0.2 S0 ; stepper XY1 M569 P0.3 S0 ; stepper XY2 M569 P0.4 S1 ; stepper Coupler M569 P100.0 S0 ; stepper E0 M569 P100.1 S0 ; stepper E1 M569 P100.2 S0 ; stepper E2 M569 P100.3 S0 ; stepper E3 M569 P0.0 S0 ; stepper Z1 M569 P0.1 S0 ; stepper Z2 M569 P0.5 S0 ; stepper Z3 M569 P100.5 S1 ; wiper disk M569 P100.6 S0 ; wiper Z height M584 X0.3 Y0.2 C0.4 ; set drive mapping (motion system X Y C) M584 E100.0:100.1:100.2:100.3 ; set drive mapping (extruders) M584 Z0.0:0.1:0.5 ; set drive mapping (motion system Z) M584 W100.6 ; set drive mapping (Wiper Z height M584 D100.5 R1 ; set drive mapping (Wiper disk, rotary) ;Leadscrew order (starting back center, then clockwise): ;1: back center ;2: front right ;3: front left M671 X-12:216:-203 Y222:-179:-179 S30 ; set Z leadscrew positions ; Axis Limits if !exists(global.hasRunInit) global minY = -266 global maxY = 115 M208 X-148:160 Y{global.minY,global.maxY} ; set axis minima & maxima M208 C0:250 Z-2:270 ; set axis minima & maxima M208 W0:25 D-100000:100000 ; set axis minima & maxima, D(isk) limit can't be disabled, so it's big and additionally, the position gets reset each time when using it in the wiper macro M92 X80.00 Y80.00 ; X/Y: 1.8°/step ;M92 X160.00 Y160.00 ; X/Y: 0.9°/step M92 C200.00 ; C: E3D coupler M92 Z800.00 ; Z: 0.9 Stepper TR8x4 leadscrews M92 W800.00 D{400 * 16 / 360} ; W: 0.9 Stepper TR8x8 leadscrew, D: 0.9 Stepper with a disk M350 X16 Y16 I1 ; configure microstepping with interpolation M350 C16 Z16 I1 ; configure microstepping with interpolation M350 W16 D16 I1 M566 X600 Y600 C2 Z200 ; set maximum instantaneous speed changes (mm/min) M566 W50 D200 M203 X30000 Y30000 C10000 Z2000 ; set maximum speeds (mm/min) M203 W4000 D20000 M201 X5000 Y5000 Z500 ; set accelerations (mm/s^2) M201.1 X5000 Y5000 Z500 ; set accelerations for special moves (mm/s^2) M201 C500 ; set accelerations (mm/s^2) M201 W400 D10000 M204 P500 T5000 ;M204 P5000 T5000 M906 X2000 Y2000 ; set motor currents (mA) for X/Y M906 C700 ; set motor currents (mA) for coupler M906 Z1500 ; set motor currents (mA) for Z M906 W1000 D1400 ; set motor currents (mA) for wiper Z and disk M906 E500:500:500:500 ; set motor currents (mA) for 4x LGX M906 I50 ;only a single idle factor allowed for ALL steppers M84 S30 ; Set idle timeout ;=================== Extruder ====================== M92 E408:408:408:408 ; set steps per mm M350 E16:16:16:16 I1 ; configure microstepping M566 E500:500:500:500 ; set maximum instantaneous speed changes (mm/min) ; used to be at 1200 M203 E15000:15000:15000:15000 ; set maximum speeds (mm/min) M201 E3000:3000:3000:3000 ; set accelerations (mm/s^2) M201.1 E3000 ; set accelerations for special moves (mm/s^2) ;==================================================== ; Endstops M574 X2 S1 P"0.io0.in" ; configure active-high endstop for high end on X via pin xstop M574 Y1 S1 P"0.io1.in" ; configure active-high endstop for high end on Y via pin ystop M574 Z0 ; No Z-Endstop (use as probe instead) ; Z-Probe if !exists(global.hasRunInit) global zProbeSpeedFeed = 300 global zProbeSpeedFeedLevel = 1500 global zProbeSpeedTravel = 20000 global zProbeDiveHeightLevel = 30 global zProbeDiveHeightMesh = 3 global zProbePin = "0.io2.in" global zProbeType = 8 global zProbeTriggerValue = 200 global minXMesh = -146 global maxXMesh = 150 global minYMesh = -150 global maxYMesh = 150 global meshPointSpacing = 30 M558 K0 P{global.zProbeType} C{global.zProbePin} H{global.zProbeDiveHeightMesh} F{global.zProbeSpeedFeed} T{global.zProbeSpeedTravel} ; Z Endstop/probe M558 K2 P8 C"0.io4.in" H10 F100 T20000 ; tool length switch G31 K0 X0 Y0 Z0 P200 ;G31 K1 X0 Y0 Z0 P200 G31 K2 X0 Y0 Z0 P200 ;G31 K0 X0 Y0 Z0 P{global.zProbeTriggerValue} ; set Z probe trigger value, offset and trigger height, offsets here are hardcoded in leveling macro as well M557 X{global.minXMesh, global.maxXMesh} Y{global.minYMesh, global.maxYMesh} S{global.meshPointSpacing} ; define mesh grid M376 H30 ; Set bed correction taper ; Heaters M308 S0 P"100.temp0" Y"thermistor" T100000 B3950 ; configure sensor 0 as thermistor M950 H0 C"100.out0" T0 Q10 ; create bed heater output and map it to sensor 0 M143 H0 S121 ; set temperature limit for heater 0 to 121C M307 H0 R0.648 K0.269:0.000 D2.51 E1.35 S1.00 B0 ; Bed PID Tuning M140 H0 ; map heated bed to heater 0 M308 S1 P"0.temp1" Y"thermistor" T100000 B4725 C7.06e-8 ; configure sensor 1 as thermistor M950 H1 C"0.out1" T1 ; create nozzle heater output and map it to sensor 1 M143 H1 S301 ; set temperature limit for heater 1 to 301C M308 S2 P"0.temp2" Y"thermistor" T100000 B4725 C7.06e-8 ; configure sensor 2 as thermistor M950 H2 C"0.out2" T2 ; create nozzle heater output and map it to sensor 2 M143 H2 S301 ; set temperature limit for heater 2 to 301C M308 S3 P"100.temp1" Y"thermistor" T100000 B4725 C7.06e-8 ; configure sensor 3 as thermistor M950 H3 C"100.out1" T3 ; create nozzle heater output and map it to sensor 3 M143 H3 S301 ; set temperature limit for heater 3 to 301C M308 S4 P"100.temp2" Y"thermistor" T100000 B4725 C7.06e-8 ; configure sensor 2 as thermistor M950 H4 C"100.out2" T4 ; create nozzle heater output and map it to sensor 2 M143 H4 S301 ; set temperature limit for heater 2 to 301C M302 S190 R190 ;Cold extrusion settings M307 H1 R2.870 K0.424:0.004 D1.67 E1.35 S1.00 B0 V23.7 ; PID Tuning T0 M307 H2 R4.192 K0.576:0.000 D1.72 E1.35 S1.00 B0 V23.7 ; PID Tuning T1 M307 H3 R4.265 K0.638:0.023 D2.27 E1.35 S1.00 B0 V23.6 ; PID Tuning T2 M307 H4 R3.767 K0.441:0.050 D2.28 E1.35 S1.00 B0 V23.5 ; PID Tuning T3 ; Fans M950 F0 C"0.out7" ; Hotend Fan Tool 0 M106 P0 S255 L255 H1 T50 C"T0 Hotend" ; Hotend Fan Tool 0 M950 F1 C"0.out4" Q50 ; Layer Fan Tool 0 M106 P1 S0 H-1 C"T0" ; Layer Fan Tool 0 M950 F2 C"0.out8" ; Hotend Fan Tool 1 M106 P2 S255 L255 H2 T50 C"T1 Hotend" ; Hotend Fan Tool 1 M950 F3 C"0.out5" Q50 ; Layer Fan Tool 1 M106 P3 S0 H-1 C"T1" ; Layer Fan Tool 1 M950 F4 C"100.out5" ; Hotend Fan Tool 2 M106 P4 S255 L255 H3 T50 C"T2 Hotend" ; Hotend Fan Tool 2 M950 F5 C"100.out3" Q50 ; Layer Fan Tool 2 M106 P5 S0 H-1 C"T2" ; Layer Fan Tool 2 M950 F6 C"100.out6" ; Hotend Fan Tool 3 M106 P6 S255 L255 H4 T50 C"T3 Hotend" ; Hotend Fan Tool 3 M950 F7 C"100.out4" Q50 ; Layer Fan Tool 3 M106 P7 S0 H-1 C"T3" ; Layer Fan Tool 3 ;Static layer fan M950 F8 C"0.out0" Q65535 ; static layer fan M106 P8 S0 H-1 I1 L0.2 C"RSCS" ; Tools M563 P0 D0 H1 F1 ; define tool 0 G10 P0 R0 S0 ; set initial tool 0 active and standby temperatures to 0C M563 P1 D1 H2 F3 ; define tool 1 G10 P1 R0 S0 ; set initial tool 1 active and standby temperatures to 0C M563 P2 D2 H3 F5 ; define tool 2 G10 P2 R0 S0 ; set initial tool 2 active and standby temperatures to 0C M563 P3 D3 H4 F7 ; define tool 3 G10 P3 R0 S0 ; set initial tool 3 active and standby temperatures to 0C M563 P4 S"Pen" ; define tool 4 (Pen) ;Dock present switches M950 J0 C"0.io7.in" ; Tool 0 Dock switch M950 J1 C"0.io8.in" ; Tool 1 Dock switch M950 J2 C"100.io5.in" ; Tool 2 Dock switch M950 J3 C"100.io6.in" ; Tool 3 Dock switch ;additional tool related switches M950 J4 C"0.io3.in" ;toolhead tool present switch ;Filament sensors M591 D0 P4 C"100.io0.in" S1 M591 D1 P4 C"100.io1.in" S1 M591 D2 P4 C"100.io2.in" S1 M591 D3 P4 C"100.io3.in" S1 M950 S0 C"0.out9" Q333 ;PebbleWiper Servo M280 P0 S70 ;Servo in idle position M950 P1 C"0.io5.out" ;Light switch PWM ;Toolhead Dotstar M950 E0 C"led" T0 ;Accelerometer M955 P0 C"spi.cs2+spi.cs3" ;Inputshaping ;M593 P"zvddd" F70 S0.2 ; Miscellaneous M98 P"/macros/ToolheadDisplay/InitToolheadDisplay" M98 P"/macros/Misc/Lights/On" M98 P"/sys/config-tools.g" M98 P"/sys/config-filaments.g" if !exists(global.hasRunInit) global deactivateToolAfterFilamentChange = false global hasRunInit = true global daemonActive = true global lastMacroResult = null