Latest posts made by gideon
-
RE: Duet Web Control 2.0.0-RC6
the macro continues to load and nothing can be seen
-
RE: Firmware 2.03beta2 available
it has always worked on the firmware 2.01,
I also do not use an end stop just Sensorless Homing
or do I have to put a little bit in the firware version in 2.03 "? -
RE: Firmware 2.03beta2 available
I get 1 error when I want to print
10-3-2019 15:26:18:: FIRMWARE_NAME: RepRapFirmware for Duet 2 WiFi / Ethernet FIRMWARE_VERSION: 2.03beta2 + 1 ELECTRONICS: Duet WiFi 1.02 or later FIRMWARE_DATE: 2019-02-23b1
Canceled printing file 0: /gcodes/Body1.gcode, print time was 0h 2m
Error: G0 / G1: insufficient axes homed -
RE: Firmware 2.03beta2 available
hello I just updated the firmware to 2.03, I had an older version more 2.00
now the next I have a corexy homex, homy, homez do not work well anymore, seems like everything goes the other way,
home all does not work anymore,
who can tell me what I am doing wrong M669 only used it because I had to think that I would miss some things again,
who can help me; homez.g
; called to home the Z axis
;
T0; select tool
G91
M280 P3 S160 I1; relative coordinates
G1 S1 Z0 F2000, lower bed
G4 P500, wait for the bed to lower
G90: absolute positioning
G1 S1 X200 Y200 F3000, move to center
M401, deploy the probe
G30, calibrate Z-axis
M402; Retract Probe; homey.g
M915 X Y S3 F0 R0; configure stall detection
M574 X1 Y1 S3; set endstops to use motor stall
M913 X50 Y50; reduce motor current to 50% to prevent belts slipping
G91; use relative positioning
G1 S1 Z0 F2000; lower bed
G1 S1 Y-400 F3600; course home Y
G1 S1 Y2; move away from end
G90; back to absolute positioning
M400; make sure everything has been stopped before we reset the motor currents
M913 X100 Y100; motor currents back to normal; homex.g
M915 X Y S3 F0 R0; configure stall detection
M574 X1 Y1 S3; set endstops to use motor stall
M913 X50 Y50; reduce motor current to 50% to prevent belts slipping
G91; use relative positioning
G1 S1 Z0 F2000; lower bed
G1 S1 X-400 F3600; course home X
G1 S1 X2; move away from end
G90; back to absolute positioning
M400; make sure everything has been stopped before we reset the motor currents
M913 X100 Y100; motor currents back to normal
M574 X1 Y1 S1; set endstops back to normal; homeall.g
; Sensorless Homing test file
M400; make sure everything has been stopped before we make changes
M915 X Y S3 F0 R0; configure stall detection
M574 X0 Y0 S3; set endstops to use motor stall
M913 X50 Y50; reduce motor current to 50% to prevent belts slipping
G91; use relative positioning
G1 S1 X-400 Y-400 F3600; move right / back 325mm, stopping at the endstop
G1 X5 Y5; move away from home
; X or Y is homed at this point, now home the other axis
G1 X-400 F3600 S1; move towards axis minimum
G1 Y-400 F3600 S1; move towards axis minimum
G1 X1 Y1; move away from home
M400; make sure everything has been stopped before we reset the motor currents
M913 X100 Y100; motor currents back to 100%
G90; back to absolute positioning
M574 X1 Y1 S1; define active low microswitches; Configuration file for Duet WiFi (firmware version 1.20 or newer)
; executed by the firmware on start-up
; Gideon
; generated by RepRapFirmware Configuration Tool on Tue Jan 02 2018 16:42:45 GMT + 0100 (Western Europe (standard time)); General preferences
M111 S0; Debugging off
G21; Work in millimeters
G90; Send absolute coordinates ...
M83; ... but relative extruder moves
M555 P2; Set firmware compatibility to look like Marlin
; Automatic saving after power loss is not enabledM669 S1; Select CoreXY mode
; S1 for CoreXY, S2 for CoreXZ, and S3 for CoreYZ
M208 X0 Y0 Z0 S1; Set axis minima S1 = minimum
M208 x390 Y390 Z590 S0; Set axis maxima S0 = maximum; Endstops
M574 X1 Y1 S1; Set of active low end stops X1 Y1 S1
M574 Z1 S2; Set endstops controlled by probe; Z-probe (PNP LJ12-a3-4)
M307 H3 A-1 C-1 D-1; Disable the 3th Heater to free up PWM channel 5 on the Duex board
; Connect the sensor output to one end of a resistor (call this R1), and connect one end of
; another resistor (call this R2) to GND on the Z-probe connector. Connect the free ends of R1 and R2
; together and to the IN pin of the Z-probe connector. The values of R1 and R2 should be chosen so that
; about + 3V appears at their junction when triggered. If R2 is 10K, then suitable values of R1 are 30K
; if the sensor is powered from + 12V
; Connect between the IN and GND terminals or the Z probe connector.M558 P8 X0 Y0 Z1 H3 I1 F100 T10000 A1 R0.5; also try mode 8 (= unfiltered faster mode 5)?
; Z1 = Z-probe is used to home this axis; XO, YO = z-probe not used for homing
; H = defines the Z probe dive height, which
is the height above the trigger height from which probing starts.
; F = The speed of Z probing
; T = the speed at which the head travels to the Z probe coordinates are specified for bed probing
; R = defines the Z probe recovery time in seconds. The printer will pause for this time just before starting the probing move
; !!!! ABL Z-OFFSET !!!
; Volcano 08 nozzle
; G31 X30 Y0 Z1.35 P600
G31 X30 Y0 Z1.085 P600; Z probe trigger value, offset in relation to nozzle. And trigger height adjustment
; this must come after M558.
; !!! THE HIGHER the Z-offset, the deeper the nozzle goes into the bed !!!M557 X32: 392 Y10: 360 S72: 50; Define mesh grid
; S = Probe point spacing; Drives
M569 P0 S1; Drive 0 goes forwards
M569 P1 S1; Drive 1 goes forwards
M569 P2 S0; Drive 2 goes forwards
M569 P3 S1; Drive 3 goes forwards
M350 X16 Y16 Z16 E16 I16; Configure microstepping without interpolation E16
M92 X80 Y80 Z400 E2667; Set of steps per mm E2670
M566 X900 Y900 Z60 E50; Set maximum instantaneous speed changes "jerk" (mm / min) 40 -> 80 with 0.05 PA -> 120 with 0.04 -> 100 with 0.03 -> 400 -> 0.1 PA and 400 E80 E40
M203 X18000 Y18000 Z600 E3600; Set maximum speeds (mm / min) Z400
M201 X1000 Y1000 Z250 E140; Set of accelerations (mm / s ^ 2) X1000 Y1000 Z250 E400 E800 E1600 E140
M906 X2000 Y2000 Z1500 E1500 I30; Set motor currents (mA) and motor idle factor in per cent
M913 X100 Y100 Z100 E100; motor currents back to normal
M84 S30; Set idle timeout; Heaters
M305 P0 T100000 B3950 C0 R4700; Set thermistor + ADC parameters for heater 0
M143 H0 S130
M307 A221.0 C312.8 D0.9 S1 V12.5; Set temperature limit for heater 0 to 120C
M305 P1 T100000 B4725 H30 L0 R4700; Set thermistor + ADC parameters for heater 1
M143 H1 S280; Set temperature limit for heater 1 to 280C
M307 H1 A335.8 C120.0 D4.4 S1 V12.6; PID settings
M303 H1 P0.85 S280
Heater 1 model: gain 335.8, time constant 120.0, dead time 4.4, max PWM 1.00, calibration voltage 11.9
Heater 1 model: gain 226.2, time constant 125.8, dead time 7.9, max PWM 0.60, calibration voltage 12.6
Heater 1 model: gain 228.2, time constant 124.0, dead time 7.5, max PWM 0.60, calibration voltage 12.6
; Heater 0 model: gain 221.0, time constant 312.8, dead time 0.9, max PWM 1.00, calibration voltage 12.5; Tools
M563 P0 D0 H1; Define tool 0
G10 P0 X0 Y0 Z0; Set tool 0 axis offsets
G10 P0 R0 S0; Set initial tool 0 active and standby temperatures to 0C; pressure advance
M572 D0 S0.08; 0.03 - 1 = waveguide time x 3 0.05 0.04 0.1 (1st WG); Network
M550 PHEVO Gideon; Set machine name
M552 P192.168.0.35; static IP
M554 P192.168.0.1; gateway
M552 P255.255.255.0; netmask
M552 S1; Enable network
; *** Access point is configured manually via M587
M586 P0 S1; Enable HTTP
M586 P1 S1; Enable FTP
M586 P2 S1; Enable Telnet; Fans
M106 P0 S0 IO F500 H-1; Set fan 0 value, PWM signal inversion and frequency. Thermostatic control is turned off
M106 P1 S1 IO F500 H1 T60: 140; Set fan 1 value, PWM signal inversion and frequency. Thermostatic control is turned off
M106 P2 S1 IO F500 H1 T60: 140; Set fan 2 value, PWM signal inversion and frequency. Thermostatic control is turned on; Custom settings are not configured
-
RE: Firmware Retraction Tuning with Macros
@Phaedrux hi have a small question. should the g10 / 11 in the start script of simply3d or not. I'm now ready to fine-tune, and jpu marcos will certainly come in handy.
-
RE: network problem
@dc42 Okay thanks then we're going to put it in a marco