My custom D-Bot
-
This post is deleted! -
@hozza I updated the first post with a list of mods used with links.
Brilliant thank you...
-
https://forum.duet3d.com/topic/5280/need-help-with-x-stop-and-bltouch
You were great help and you almost have me there.Thank you so much for your help
-
Looks great. I have a heavily modified C-Bot (D-Bot wasn't around when I made it) and I really dig your z-axis leadscrew setup. Nicely done!
-
@ak-eric Thanks a lot. I read through your build logs while I was planning out the build. Definitely learned a lot.
-
Love the build. This is my next build, But I wont be ordering the kit, I cant seem to find a D-bot thing on Thingiverse, I did see your Thing on there and will be using it. Is there a thing with all the files that need to be printed? My plan is something like a 22x22x24 build index, don't need it but why not haha.
-
@stealthy_tt here's the stock DBot thing https://www.thingiverse.com/thing:1001065
And here is the thing with all the mod files for the z-axis setup I used. https://www.thingiverse.com/thing:2651649
-
@phaedrux Thank you, I couldn’t find it to save my life.
-
Thanks for posting this. I am in the process of ordering parts for a new D-Bot build pretty much identical to yours. I have a quick noob question; On the 3-lead screw mod, what GT2 pulleys do I need to achieve the 1:1 ratio for screws and motor? I've ordered these 8/2 lead screws: https://www.amazon.com/gp/product/B017AR5QBS/ref=od_aui_detailpages01?ie=UTF8&psc=1 and these stepper motors: https://www.amazon.com/gp/product/B06ZY9SPWL/ref=od_aui_detailpages01?ie=UTF8&psc=1. Im just new at this and am unsure about the pulleys as there are so many choices.
-
@uncreative1 Are you planning on using a single motor to turn 3 screws, or one motor for each screw?
The screws you linked appear to have 8mm of travel per revolution which would be fairly steep in my arrangement and might require more torque to lift a heavy build platform than a single motor can reliably provide. This wouldn't be as much of an issue with one motor for each screw though.
For the pulleys I just chose 40 tooth GT2 pulleys to give the belt ample surface to grip. They are the same tooth count between the motor and the lead screws, which gives 1:1 ratio. 5mm bore for the motor and 8mm bore for the screws. The triangle arrangement ensures that the belt gets good contact and reduces the chance of slippage.
Here's a link to the pulleys I used. https://www.aliexpress.com/item/10pcs-New-GT2-Timing-Pulley-30-36-40-60-Tooth-Wheel-Bore-5mm-8mm-Aluminum-Gear/32822906054.html
In your case, you may want to change up your gear ratio between the motor and the screws to gain more torque. For instance, a 60 tooth pulley at the motor and 40 at the screws.
-
This is a really pretty build, and it's made me pull the thread on building one. I just bought a kit and am looking at what other parts I'm going to need to buy. I definitely like some of the changes you've made and used, and plan to use some myself. Looking through your pictures and this thingiverse file you used (https://www.thingiverse.com/thing:2401504), and I'm not getting how the lead screws stay secure in the flange bearings. He said something about using 8mm clamping collars, but I'm not seeing how that would keep it any more secure than the toothed gear. Am I missing something? I looked through your pictures, but couldn't from the angles. Thanks for sharing your build!
-
@ntgorilla Thanks for the compliment. I think you'll enjoy the build, it's a challenge, but pretty satisfying when it all comes together. Spauda01 did well on the design.
I took some more pictures of the lead screw mounts that show how I have used them. I didn't follow exactly the description from that original thingiverse mod. The pulleys I used have a body small enough to sit comfortably on the bearing, so the weight of the bed assembly holds it down onto the bearing. The lead screw protrudes from the bottom just enough for a lock collar to clamp on and keep the lead screw in place against any lifting forces. It doesn't do anything else other than let you clamp the lead screw into the bearing sandwich.
During installation I slide the lead screws into the bearing blocks and put the collar on so that the end of the lead screw is flush with the collar. Then I push down on the pulley and up on the collar and secure the set screws of the pulleys. That keeps the lead screws quite secure in the mounting block.
Before putting the belt on I rotate the lead screws so the tops are flush with the top of the nuts in the bed mount. Then carefully wrap the belt around the back pulley and then side pulleys without making them rotate to keep the in sync. Then into the tensioner. It really helps to have a second set of hands for this step. I try not to tension the belt too much or else it deflects the lead screws a bit which can cause binding when the bed is at the lowest extent.
Speaking of binding, it's also critical to get the lead screw bed mounts perfectly lined up with the screw mounts. The bed frame needs to be tightened in stages to allow for some wiggle room in the X or Y. The Z wheels need to be aligned on the V slots before being tightened. Everything needs to be done in stages otherwise you will run into binding.
-
@phaedrux Awesome! Thank you for the extra pictures and explanation! That makes a lot more sense now, and looks a lot sturdier! Thanks for the tips too! I'm looking forward to working on it!
-
@ntgorilla If you have any other questions I'd be happy to answer.
A few other tips I wish I'd known when I started.
- Get T slot nuts and don't use square nuts. Get some hammerhead t slot nuts as well as they let you insert anywhere along the slot.
- Get aluminum spacers and precision shims for the wheels. Makes tightening without binding possible. Polycarbonate wheels are a nice touch too. The Delrin ones do wear down.
- Get aluminum corner brackets and plates. Much stiffer and really not expensive. Saves a lot of printing time too. Literally pennies more expensive than the filament.
-
@phaedrux Thanks for the tips! I've definitely learned some of those the hard way building a couple deltas. I have a nice stash of t-nuts ready to go. I'm holding off on the PC wheels for now, because I have some extra linear rails I might try to see if I can work into it. That's good to know about the Delrin wheels though. I never had that issue on a delta when I was using wheels, but then again, I could see how this would stress them a lot more than a delta. And I definitely picked up bunch of the metal L and T plates, and the 90 degree corner brackets. Parts should start trickling in this week. I'm still waiting on a part for my delta to get here. I held off on installing one of my old extruders because I thought it would get here faster. But I've been pretty busy too, so I still have a lot of parts to print lol.
-
Ref the Delrin wheels, I've not seen any sign of wear after many hundreds, if not thousands, of hours of printing and I'm throwing about 2kg of mass on each gantry. We're they the mini wheels or standard?
-
@deckingman They were mini V wheels. The edges would eventually leave some black dust on the v slot. Perhaps they were low quality or perhaps over tensioned, but I don't think so. When they were too tight they became stiff to push, I had them still gliding effortlessly. Maybe they didn't match the extrusion profile, but I find that hard to believe as they come from the same source. Who knows. It's not like they fell away to nothing, just had some visible wear.
-
I've seen one or two reports from people who have had problems with the mini V wheels. Can't remember the exact nature of those problems but it could well be wear due to the smaller diameter? Or as you say, maybe something to do with not being able to get the correct pre-load. Anyway, for whatever reason, the "standard size" Delrin wheels have been fine for me and my machine.
-
I've had Delrin mini V's on my small printer for the last 3 years without any issues thus far. And it has tons of printing hours on it.
I tried running the new harder clear wheels on my large printer but ended up switching that one to Delrin wheels now. The harder wheels transfer vibrations that were showing up in my prints. Also 2 of the harder wheels had chipped at some point during the many hours of printing. I probably got some plastic or who knows what on one of the tracks to cause the damaged wheels.
The Delrin wheels don't transfer the vibrations and aren't as fragile so I'll stick with them. I never tried the larger wheels.
-
@timcurtis67 that's interesting you mention vibration transfer. I wonder if I'm not seeing some of that now. At low layer heights I seem to have quite a bit of micro ghosting happening at anything other than a crawl speed.