@sonderzug said in High Temperature printing:
I've acutally written my master's thesis about designing and building a HT printer. In my case, HT refers to a build chamber temperature of about 160-200 °C and nozzle temperatures of 350-450 °C.
The main challenge was in fact to design a motion system that would either withstand the heat or be excluded from the heated and isolated build chamber. I chose igus drylin in a stainless version with HT capable gliding foils, as well as high pitch spindles with nuts from the same polymer (I work at igus and did my master's there, if someone wants to look at the design, do so here). In this case, the linear rails are kept in the build chamber while the spindles protrude through the isolation to the outside, where they are driven by the steppers.
Doing so allowed me to bypass the Stratasys patent which seemed to be the sensible thing at the time.
If I were to design one such printer again, I would change a few things over the last design (aside from general considerations like accessibility and manufacturability). Most notably I would consider changing to a belt-driven, maybe coreXY system that is isolated by bellows as suggested before. A design that incorporates this is shown here.
In contrast to some who commented before, I'm very much of the opinion that the higher the chamber temperature, the better. While you can certainly produce some nice parts at 70 °C (at which temperature most available belts start to go out) sneaking up to Tg of the polymer is ideal and will allow to freely print parts of any shape without problems. And while for most use cases, materials like PA and PC (natural or filled) will do the trick, if you want to process materials like Ultem or PEEK (that have not been highly altered to be suited for lesser temperatures), you need that 160-200 °C chamber temperature at least.
If it doesn't become clear from this, IMO it's not the main challenge to reach the required nozzle temps. A 60 W heater, maybe water cooling for the hotend and a berd-air system for part cooling (or pressurized air for both, which is available in most workshops) does the trick. In my setup I'm running an E3D setup with the standard heater cartridge. The standard temperature sensor cartridges are garbage in this application and have been replaced by a high quality, braided-line version.
@sonderzug Is your thesis readable somewhere ? Thank you.